If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+20x-200=0
a = 5; b = 20; c = -200;
Δ = b2-4ac
Δ = 202-4·5·(-200)
Δ = 4400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4400}=\sqrt{400*11}=\sqrt{400}*\sqrt{11}=20\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{11}}{2*5}=\frac{-20-20\sqrt{11}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{11}}{2*5}=\frac{-20+20\sqrt{11}}{10} $
| 500x-0.03=100x+0.37 | | 4.6x-27=2.2x+9 | | 4.7=6x+9.8 | | y-9.4=7 | | C=25+7x | | 5x^2+20x+200=0 | | 8.3x+9-4.3x=1 | | 5x/2-3/4=1/6 | | 5(y+2)-(-y-1)=3 | | 2w^2-3w=152 | | 4900000=x+x*0.08 | | (2w-3)w=152 | | 2-3=5-r | | -0.75d-2=0.25d | | 2.27-m/4=2 | | f(−1)=3(-1)+2 | | c-8=32 | | 12^y-8=5 | | x+5+x+x+10=180 | | 158+x+90=180 | | 11-6x+4x=15x=-2 | | 3+4{x-1}=12x-15 | | x2+3x=67.5 | | 9=4x+21x=-3 | | (15/e)-1=-46 | | 5y+12=7y+18 | | 49+89+3p=180 | | 54/6=n | | 4x+3+x=1-3x+ | | 34=7x-5+2x | | 2.58-12.5r=-11.6r+18.51 | | -25/x=5 |